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Abstract

We present a security analysis of an internet banking system used by one of
the bigger banks in the Netherlands, in which customers use a USB-connected
device – a smartcard reader with a display and numeric keyboard – to authorise
transactions with their bank card and PIN code. Such a set-up could provide
a very strong defence against online attackers, notably Man-in-the-Browser at-
tacks, where an attacker controls the browser and host PC. However, we show
that the system we studied is seriously flawed: an attacker who controls an in-
fected host PC can get the smartcard to sign transactions that the user does not
explicitly approve, which is precisely what the device is meant to prevent.

The flaw is not due to a simple implementation bug in one of the components
(e.g. the device or the software components on the PC). It is a more fundamental
design flaw, introduced in assigning responsibilities to the different components
and designing the protocols between them.

The system we studied, used by the Dutch bank ABN-AMRO, was developed
by the Swedish company Todos AB. This company has since been acquired by
Gemalto. ABN-AMRO is one of the three biggest banks in the Netherlands, with
6.8 million customers. Given the popularity of internet banking in the Nether-
lands, this means that millions of these devices are in the field. The manufac-
turer claims this device is “the most secure sign-what-you-see end-user device
ever seen” 3; this paper demonstrates this claim to be false.

1 Introduction

For internet banking, many banks let their clients use a hand-held smartcard
reader with a small display and keypad. In combination with a smartcard and
PIN code, this reader then signs challenges reported on the bank’s webpage,
to log-on or to confirm bank transfers. Many of these systems use EMV-CAP

3 http://www.gemalto.com/financial/ebanking/case_studies/ABN_AMRO.html
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(EMV-Chip Authentication Program), a proprietary standard of MasterCard
built on top of the EMV (Europay-Mastercard-Visa) standard, as does the sys-
tem discussed in this paper.

Such a two-factor authentication, which requires access to a smartcard and
a PIN code, is of course much stronger than a traditional password. Still, a
serious and fundamental limitation of these hand-held readers is that the very
short challenges, of only eight digits, do not offer much scope for a message that
is meaningful to the user. Often the eight digits are just a random number, in
which case the user has no real idea what he is authorising. This means that
a Man-in-the-Browser attack, where the attackers controls the browser on the
client’s PC, can still let someone unwittingly approve unwanted transactions.

This risk can be mitigated by letting the user sign additional challenges, for
instance the amount or say the last eight digits of the bank account, which are
meaningful to the user. Some online banking sites use such additional challenges
for transfers with high amounts or transfers to bank accounts not used before
by a customer. The downside of this is more hassle for the user, typing the extra
challenges and responses. Also, a compromised browser could still trick users
into signing these additional challenges, as a user cannot tell if an apparently
random challenge is not in fact an amount or the last 8 digits of the attacker’s
bank account. Users could be asked to type in more than eight digits, possibly
using devices with a bigger display, but clearly there will be a limit on how much
hassle users are willing to accept.

Connecting the reader to the PC with a USB cable can solve the problem,
or at least drastically reduce the risk and impact of Man-in-the-Browser at-
tacks. The user no longer has to retype challenges and responses, making longer
challenges acceptable. Moreover, the display can be alphanumeric (even if the
keyboard is numeric only), allowing more meaningful challenges for the user.
Not only security is improved, but also user-friendliness, as users do not have to
retype challenges and responses.

The system we studied works in this way. Prior to confirming a bank transfer,
the user sees details of the transfer he is about to approve on the display of the
reader, as shown in Fig. 1. Gemalto calls this system SWYS, “Sign What You
See”. There is a patent application describing this solution [11].

Of course, connecting the reader to a PC introduces new risks: the PC could
be infected and controlled by an online attacker. Such an attacker can then inter-
fere with communication over the USB line, passively eavesdropping or actively
changing communication. Still, the functionality exposed over the USB line can
be very restricted, and given the simplicity of the device – and the obvious se-
curity requirements – controlling this risk seems easy. However, as this paper
shows, the system we studied fails to properly ensure one of the core security
objectives.
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Fig. 1. The USB-connected reader, with the bank card sticking out the top, showing
transaction details for the user to approve a login (left) or a bank transfer (right).

2 Background: EMV-CAP

The internet banking system we studied uses a variant of EMV-CAP, a propri-
etary standard of Mastercard that is widely used for internet banking. EMV-
CAP is based on the EMV standard [9]. EMV, which stands for Europay-
Mastercard-Visa, is used in most (if not all) banking smartcards.

In EMV-CAP, a regular EMV transaction is started but cancelled in the
last step. In the course of an EMV-CAP transaction a smartcard generates
two so-called Application Cryptograms (ACs) as proof of authorisation. The
first cryptogram, an ARQC (Authorization Request Cryptogram), is used as
authorisation of some online banking transaction. The second cryptogram, an
AAC (Application Authentication Cryptogram), just serves to cleanly terminate
the transaction.

These cryptograms are not digital signatures using asymmetric cryptography,
but MACs (Message Authentication Codes) generated using a symmetric key
shared between the bank and the smartcard (typically a 3DES key). We will still
talk about the card ‘signing’ challenges, even though technically this terminology
is incorrect. The reason for using symmetric crypto is historic: most modern bank
cards are now capable of doing asymmetric crypto, but EMV was designed to
be used with cheaper cards that did not.

EMV-CAP readers typically use an 8 digit numeric challenge, and respond
with a 8 digit numeric response which is constructed from the first cryptogram,
an ARQC, reported by the smartcard. In most modes of EMV-CAP the response
is constructed by applying a bit filter to the ARQC, which selects some bits of
the MAC and the least significant bits of the smartcard’s transaction counter4,
which is reported by the smartcard together with the ARQC.

4 Called the ATC, for Application Transaction Counter, in EMV terminology. The
ATC is included in the computation of the ARQC, so the bank needs to know it to
verify the authenticity of the response.
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EMV-CAP has been largely reverse-engineered [8, 15] and an informative
description is leaked (apparently accidentally) in [5, Appendix 1]. This has re-
vealed some potential for ambiguities [8] (e.g. between transactions to log-in and
to transfer a zero amount) and, more worryingly, bad design decisions in some
variants of EMV-CAP [15] (notably, not using unpredictable input, such as a
nonce or transaction data, as input for the ARQC).

The system we studied also uses EMV-CAP, albeit with an additional twist,
namely that there is an additional and unknown step to ‘mangle’ the challenge
and the response, as explained in more detail later.

3 The e.dentifier2

The device we investigated is called the e.dentifier2. It is a smartcard reader
with a display and keyboard, making it a class 3 device in the FinTS/HBCI
classification5. The display can contain up to 68 characters. The keyboard pro-
vides numeric keys, an OK, and a Cancel button. The e.dentifier2 can be used
for online banking with or without USB connection. Our attack only concerns
the connected mode, but for sake of completeness we also describe the uncon-
nected mode. As far as the interaction between the device with the smartcard
is concerned, there is no difference, and the interaction is a regular EMV-CAP
transaction.

3.1 Unconnected mode

Without USB connection, the device behaves like a standard EMV-CAP reader:
the user types in an 8 digit challenge and the reader returns a 8 digit response.
However, the device does not quite conform to known variants of EMV-CAP, and
the device performs some additional mangling of the data on top of EMV-CAP.
The challenge sent to the smartcard for computing the ARQC is not identical to
the challenge typed in by the user, but there is some additional hashing and/or
encryption. This additional mangling means that there are unknown functions
hard-coded in the device. The secrecy of these functions is not crucial for the
security, but it does prevent interoperability with EMV-CAP readers issued by
other banks, and it prevents the construction of a software emulation of the
device, as is available for other EMV-CAP readers6.

As already mentioned, the attack reported in this paper does not concern
the system in unconnected mode.

3.2 Connected mode

To use the connected mode, customers have to install a special driver (only
available for Windows and MacOS). The web-browser then interacts with this

5 Available from http://www.hbci-zka.de
6 Available from http://sites.uclouvain.be/EMV-CAP
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Fig. 2. Setup for internet banking with the e.dentifier; the web browser communicates
over USB with the e.dentifier, into which the bank card is inserted.

driver via JavaScript and a browser plugin. The browser plugin checks whether
it is connected to either the domain abnamro.nl or abnamro.com using SSL. If
this is not the case, the plugin will not function. The Firefox plugin also allows
local files to use the plugin. This might introduce security risks as, for example,
this means that attachments in emails could also use the plugin.

In connected mode, an internet banking session starts with the reader reading
the bank account number and the card number from the smartcard and supplying
it to the web-browser. So the user does not have to type this in, making the
system more user-friendly.

To log in, the reader first prompts the user for his PIN code. It then displays
a message saying that the user is about to log in and asks the user to confirm
this by pressing OK (see Fig. 1).

To confirm a bank transfer, or a set of bank transfers, the reader will again
prompt the user for his PIN code. It then displays a message giving the number
of transfers the user is about to approve and the total amount of money involved,
and asks the user to approve this by pressing OK (see Fig. 1).

The additional security of the connected mode over the unconnected mode
here is that you see what you sign, even if the browser or the PC it runs on
is controlled by malware. Section 4 below discusses the security objectives to
guarantee ‘What-You-Sign-Is-What-You-See’ in more detail.

Connecting the e.dentifier2 to a possibly infected PC by USB does introduce
a new attack vector: malicious code on the PC could try to interfere with the
device. Still, given the device is so simple and offers so little functionality, it
should be possible to design and implement it so that it is secure against such
attacks.

4 Security Objectives of WYSIWYS

The crucial security objectives to ensure WYSIWYS (What-You-Sign-Is-What-
You-See) are that

– the text on the display is always included in the data that is signed,
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– and that signing is only done after the user has given his consent.

Apart from the text on the display, the signature should also include some
session-unique information, such as a nonce or transaction counter, to prevent
replays.

The device has to be a trusted display in the narrow sense, by which we
mean that what is displayed on the screen is (part of) what is signed by the
smartcard. The device could also be a trusted display in the broader sense in that
the messages displayed are guaranteed to originate from the bank. This second
property is not strictly necessary for ensuring the user’s consent in signing what
is shown. Still, it is clearly a nice property to have; if the device is not a trusted
display in this broader sense, then an attacker could use the display as part of
sophisticated phishing attacks.

The device has to be trusted for PIN entry, as it passes the PIN code the
user provides to the smartcard, so it should meet the security requirements this
brings. The PIN code entered should not leak in any way: it should not be shown
on the display when the user types it, and it must obviously not be revealed over
the USB line. Only PIN codes entered on the keypad should be passed on to the
smartcard as PIN guesses, and never data coming over the USB line. The latter
would enable malware on the PC to perform a Denial-of-Service (DoS) attack,
by blocking the card with three PIN guesses, or to guess the PIN code right in
0.03% of the cases (or more, if users can choose their own PIN [4]).

More generally, possibilities for interaction over the USB line have to be kept
to a minimum: the device should not offer functionality for the PC to read data
entered on the keypad over the USB line, or for the PC to send commands to
the smartcard over the USB line (and then receive the card’s responses). Clearly
the device will have to send some commands to the smartcard on instruction
from the PC, and then send back some of the responses, but such functionality
should be limited to what is strictly necessary.

Note that it is the job of the smartcard to check whether the PIN code is
correct. It is also natural that the smartcard only generates a signature after it
has been supplied with a PIN code, and preferable does so only once7.

Handheld readers for home use are typically not designed to be tamper-
resistant or tamper-evident to any serious degree. This would make the devices
far too expensive, while the online attackers that the reader is meant to protect
against do not have physical access. (The FINREAD initiative [10] did aim
at tamper-resistant readers, but was not successful because of the costs.) Still,
although online attackers are the main threat, one should not overlook creative
possibilities for attackers to get physical access. In the Netherlands criminals
successfully tampered with readers that were available inside bank offices for
customers to use, in order to obtain PIN codes and enough data to reconstruct
valid mag-stripes. Of course, allowing the mag-stripe to be constructed from
data supplied by the smartcard chip was a very bad design choice in EMV, and
has since been remedied.

7 Tests we have done with bank cards show that this indeed the case [1].
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5 Analysis tools

Reverse engineering the precise working of the system, and subsequently carry-
ing out our attack, required eavesdropping and sometimes also actively altering
traffic on the three channels shown in Fig. 2, i.e. communication (i) with the
bank’s website over HTTPS, (ii) between the PC and the reader over USB, and
(iii) between the reader and the smartcard. For this we used various tools.

HTTP(S) communication To intercept and modify network traffic between the
browser and the bank web application we used Fiddler2, a web debugging proxy8.

ISO7816 smartcard communication To eavesdrop on communication between
the smartcard and the reader we initially used the APDU Scanner by Rebel-
SIMcard9. This software and the associated hardware to physically intercept the
traffic have been developed to study SIM cards (typically, to study how SIM
locking works), but it works for any ISO7816 smartcard.

Later on, we also used a tool for smartcard communication analysis that
we developed ourselves [6], which also allowed active Man-in-the-Middle attacks
and replaying of earlier sessions to the smartcard reader. This tool consist of a
USB-connected FPGA (Field Programmable Gate Array) and can be used for
passive eavesdropping, relay attacks (where smartcard communication can be
relayed for instance over IP), and active Man-in-the-Middle attacks. The design
of this device is open and the software is available as under the GNU GPL.

Eavesdropping USB communication To eavesdrop on communication over the
USB line we used USBTrace10 and Wireshark11. USBTrace has the advantage
that in addition to the raw traffic of individual packets it also shows the ag-
gregated communication of larger messages that in fact take several packets.
However, this also caused some confusion, as initially it was unclear what really
went over the line.

Replaying USB traffic To replay USB communication we wrote our own software.
The USB interface of the e.dentifier2 requires a vendor specific driver for com-
munication. The workings of this driver is proprietary and not publicly available.
We used the open-source libusb library12 to build a simplified driver ourselves.
Libusb takes care of all the low-level details of the communication between the
computer and USB device. The driver we developed uses bulk data transfers,
which are unspecified raw messages that allows a user to send and receive binary
data with an arbitrary length. The eavesdropped communication showed that all
communicated messages were a multiple of 8 bytes long. Although the details of
the communication protocol were not available, it was rather simple to replay an

8 http://fiddler2.com
9 http://rebelsimcard.com/network-sim-apdu-scanner.html

10 http://www.sysnucleus.com
11 http://www.wireshark.org/
12 http://www.libusb.org/
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Fig. 3. Setup for Man-in-the-Middle attack on USB traffic; the communication between
the browser and the e.dentifier2 is tunnelled over TCP/IP to another PC (labelled USB
Server), which forwards it to the e.dentifier2.

earlier recorded transaction of USB messages. Since there is no authentication
between the device and the bank, all features of the e.dentifier2 become available
directly after plugging the device into a computer.

Man-in-the-Middle attack on USB traffic Executing and validating the attack in
a real online banking session required a Man-in-the-Middle attack on the USB
traffic in which we actively altered some data. We could not find any existing
software to carry out a Man-in-the-Middle attack on USB. We therefore did it
in a somewhat roundabout way, by tunnelling the USB traffic over TCP/IP, and
then modifying this tunnelled traffic, as depicted in Fig. 3. We also considered
reverse engineering and modifying the driver code, and tried to develop a custom
device driver using the LibUsbDotNet library13, but these alternatives seemed
more work. Tunnelling the USB traffic over TCP/IP could be done with exist-
ing software, namely the USB to Ethernet Connector14. The advantage of this
method is that there is no need to fully understand the USB protocol. Further-
more, the software of the banking application, notably the custom device driver,
could be used without any modifications.

6 The SWYS Protocol

The tools described in the previous section allowed the reverse engineering of
online banking with the e.dentifier2 in connected mode.

Fig. 4 outlines the abstract SWYS protocol for logging in or confirming a
transaction (i.e. a bank transfer). In either case the web-browser sends so-called
signdata to the reader. This signdata consists of two parts, namely some text
(that is shown on the display) and some number (which is not):

13 http://sourceforge.net/projects/libusbdotnet
14 http://www.eltima.com/products/usb-over-ethernet/
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– In the case of a login, the signdata text specifies the account number and
bank card number; in case of a transaction, it specifies the number of trans-
actions and the total amount (see Fig. 1).

– In the case of a login, the signdata number is a 4 byte value giving the current
UNIX time; in case of a transaction, it is a 20 byte apparently random value.

Host PC USB reader smartcard

ASK-PIN

display shows ”ENTER PIN”

user enters PIN

VERIFY pin guess

PIN OK

SIGNDATA-DATA number

SIGNDATA-TEXT text

display shows text

user presses OK

user pressed ok

GENERATE-AC

GENERATE AC f(text, number)

ARQC

GENERATE AC f(text, number)

AAC

g(ARQC)

Fig. 4. SWYS protocol for log-in and for transactions

In the protocol, the reader asks the smartcard to produce two cryptograms,
using the GENERATE_AC command. Included in these commands is a 4 byte pay-
load15. (As is usual in EMV-CAP transactions, the first cryptogram is an ARQC,
the second an AAC, but these details do not matter here.)

By replaying earlier transactions, and varying the text and number parts of
the signdata, we could confirm that this 4 byte payload does depend on both the
text and the number. Hence this payload is written as f(text, number) in Fig. 4.
It has to depend on the text to make sure that ‘we sign what we see’; including
the number is useful to diversify the input and prevent replays, though the
computation of the cryptograms will also involve the card’s transaction counter.
We do not know what the function f is.

To finish a transaction, the reader sends a response back to the web-browser,
which is based on the cryptograms generated by the smartcard. Again, we do
not precisely know how this response is computed, only that it depends on the

15 called the Unpredictable Number in EMV terminology
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ARQC reported by the smartcard. Hence it is written as g(ARQC) in Fig. 4. So
g, like f , is an unknown function that is implemented in the device.

ASK-PIN 01 03 04 00 00 00 00 00

SIGNDATA-DATA-LOGIN 01 03 05 06 00 00 00 00

SIGNDATA-DATA-TRANSACTION 01 03 05 16 00 00 00 00

SIGNDATA-TEXT 01 03 05 46 00 00 00 00

GENERATE-AC 01 03 06 00 00 00 00 00

Fig. 5. commands sent over the USB line

Tx: 01 03 01 02 00 00 00 00 ........

00 02 65 6e 00 00 00 00 ..en....

Rx: 01 03 01 01 00 00 00 00 ........

00 01 01 01 00 00 00 00 ........

Tx: 01 03 04 00 00 00 00 00 ........

Rx: 01 03 02 00 00 00 00 00 ........

Tx: 01 03 05 16 00 00 00 00 ........

00 06 00 14 9a 2c 83 9a .....,..

00 06 4f 4f 3c 8e 3e b8 ..OO<.>.

00 06 ef 39 0b 60 b9 46 ...9.‘.F

00 04 30 12 01 00 b9 46 ..0....F

Rx: 01 03 02 00 00 00 00 00 ........

Tx: 01 03 05 46 00 00 00 00 ...F....

00 06 01 44 44 6f 6d 65 ...DDome

00 06 73 74 69 63 20 20 ..stic

00 06 20 20 20 20 20 20 ..

00 06 20 31 20 74 72 61 .. 1 tra

00 06 6e 73 61 63 74 69 ..nsacti

00 06 6f 6e 28 73 29 20 ..on(s)

00 06 45 55 52 20 31 32 ..EUR 12

00 06 33 2c 30 30 20 20 ..3,00

00 06 20 20 20 20 20 43 .. C

00 06 6f 6e 66 69 72 6d ..onfirm

00 06 20 77 69 74 68 20 .. with

00 04 4f 4b 20 20 68 20 ..OK h

Rx: 01 03 02 00 00 00 00 00 ........

Tx: 01 03 06 00 00 00 00 00 ........

Rx: 01 03 03 19 00 00 00 00 ........

00 06 80 00 6d b8 c7 cc ....m...

00 06 ab 00 12 a5 00 03 ........

00 06 02 00 00 00 00 00 ........

00 06 00 00 00 00 00 00 ........

00 01 ff 00 00 00 00 00 ........

Fig. 6. Communication between
computer and e.dentifier2 over the
USB line

Protocol details The webpage interacts
with the driver through JavaScript. The data
that is passed to the driver, such as the sign-
data, is TLV encoded.

Communication between the reader and
the smartcard uses the ISO7816 protocol, us-
ing the instructions as defined in the EMV
standard. The protocol excerpt shown in
Fig. 4 involves two instructions, VERIFY and
GENERATE_AC. On start-up there is some addi-
tional communication with the smartcard, to
read out some of the data from the smartcard,
such as the account number, which is used in
communication over the internet.

The communication between the PC and
the reader over USB was harder to under-
stand. It involves more data than between
the reader and the smartcard, and it does
not follow any standards, such as ISO7816
and EMV, that we knew. For most of the
traffic from the PC to the reader we could
eventually determine the meaning, see Fig. 5.
though we see some additional data for which
the meaning is unclear. The reader responds
with 01 03 02 00 00 00 00 00 to indicate
OK. Fig. 6 contains a communication trace
between computer and e.dentifier2. It shows
the USB frames for a successful transaction
of e123.00.

7 The attack

As can be seen in Figure 4, the reader sends a message to the host PC indicating
the user pressed OK. After this the host PC sends a command to generate the
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Host PC USB reader smartcard

ASK-PIN

display shows ”ENTER PIN”

user enters PIN

VERIFY pin guess

PIN OK

SIGNDATA-DATA number

SIGNDATA-TEXT text

display shows text

GENERATE-AC

GENERATE AC f(text, number)

ARQC

GENERATE AC f(text, number)

AAC

g(ARQC)

Fig. 7. Attack on SWYS protocol; the difference with Fig. 4 is that the driver directly
gives the instruction to generate the ACs, without waiting for the user to press OK

cryptograms to the reader. This seems strange, as the reader would be expected
to generate the cryptograms automatically after OK has been pressed. The driver
on the host PC should not play a role in this.

This weakness can be exploited: by sending the request over the USB line to
generate the cryptograms without waiting for the user to press OK, the cryp-
tograms are generated and the reader returns the response over the USB line,
without the user getting a chance to approve or cancel the transaction. To make
matters worse, a side-effect of giving this command is that the display is cleared,
so the transaction details only appear on the display for less than a second. We
demonstrated this attack in an actual internet banking session.

This means that an attacker controlling an infected PC can let the user sign
messages that the user did not approve, thus defeating one of the key objectives
of WYSIWYS. The user still has to enter his PIN, but this is entered at the start
of a transaction, and after this no more interaction is needed from the user to
sign malicious transactions.

8 Other attack scenarios

In a different approach we tried to manipulate the text displayed on the screen.
For this we investigated whether the fact that not only the text on the display but
also some random data is signed, introduced a flaw. If the text and random data
would simply be concatenated, part of the text might be shifted to the random
data. This would result in less text being displayed (for example only ’Press
OK to continue’), while still producing the same signature. In our experiments
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this however did not work, suggesting that either some separator is used in the
concatenation or a part of the USB packets is also included.

9 Extended length challenges

Initially it was mind-boggling to us how this vulnerability could ever have been
introduced. Subsequently it became clear that the vulnerability may have been
introduced as a side-effect of having additional functionality in the device, where
the device shows several messages for the user to approve. Presumably this
functionality is included for more complex transactions where more than 68
characters are needed to display transaction data.

We never observed such transactions in our use of the online banking system,
but using our own driver we could see that the device is capable of doing this.
Several messages can be sent to the reader in turn, with the next message being
sent after the user presses OK, and then after the final message the driver can
give the command to generate the response. We could observe that the 4 byte
payload sent as challenge to the smartcard depended on all the texts that were
sent to the reader and displayed there. Presumably the unknown function f

implemented in the device hashes these texts together to compute this challenge.
For this variant of the protocol the reader needs to communicate with the

driver after the user presses OK, namely to request the next part of the message.
This might explain – but not excuse! – why the weakness has been introduced
in the first place, and why it was missed in security reviews.

Note that this variant of the protocol results in an overloaded semantics for
the OK button: it can mean an instruction (to the driver) to ‘send more data
to the display’ or an instruction (to the smartcard) to ‘go ahead and generate
a cryptogram’. Since the reader is not aware of the meaning of the button, the
host PC has to determine this, providing a possible origin of the vulnerability.

10 How could – and should – this have been prevented?

The attack that we found is something that should have been detected, and – as
we argue below – could have been detected. After all, the attack does not involve
some detailed cryptanalysis, rely on a cleverly crafted man-in-the-middle attack,
or exploit some subtle low level coding mistake. A patent application describing
an e.dentifier2-like solution has been filed by the company that produces it [11];
the higher level description of the protocol given there does not include the
vulnerability that we found.

We have no insight in the procedures followed in design, implementation, or
testing, or indeed any of the associated documentation, so we can only speculate
how the vulnerability could possibly have been missed. Still, we can consider
how it could – and should – have been spotted, or, better still, prevented in the
first place.

Firstly, the attack breaks one of the central security objectives of WYSIWYS.
This security objective should be used as a basis for considering abuse cases. (If
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the EMV specs [9] are anything to go by, the security objectives may well be
completely undocumented and implicit in the specs.) An obvious abuse case that
could already have been identified in the early design phase is: (i) malicious code
on the PC that tries to get the reader to sign without the user’s approval.16

It seems unlikely that the vulnerability could have gone unnoticed in design,
implementation and testing if this abuse case was made explicit, as it would
then have been considered by e.g. a reviewer of the specifications or tester of
the implementation. In fact, one would then expect someone developing the
spec or implementing it to notice the problem long before any post-hoc security
evaluation.

As discussed in Section 9, it seems that the semantics of pressing the OK
button is overloaded. This overloading could be spotted in a high level spec that
only considers the interaction with the user, if in such a spec one tries to make
the semantics of pressing OK explicit. Overloading the semantics of actions or
cryptograms is also noted as a potential problem in EMV-CAP [8].

Formal techniques for protocol verification have been shown to be capable
of handling complex real-life protocols. For example, it has been shown that the
core of the EMV protocol can be fully formalised and that tools can then reveal
known weaknesses [7]. Such techniques could also be used to look for weaknesses
as the one discussed in this paper.

Finally, even if the problem went unnoticed in the design, the problem could
still have been detected by more systematic testing. Exhaustive testing is of
course impossible, even for a system as simple as this: the messages over the
USB line are small but too long for exhaustively testing all possible contents.
Still, the number of different types of messages over the USB line is very small.
The number of internal states of the reader, which correspond to particular states
of the simple protocol it implements, is very small too. So exhaustively testing
every type of message in each protocol state is feasible, and this would have
inevitably revealed the problem. Such testing can be done in a systematic and
largely automated way using model-based testing [16].

11 Related work and related online banking systems

We are not aware of any related work investigating USB-connected smartcard
readers for internet banking. As discussed in Section 2, unconnected smartcard
readers for internet banking has been thoroughly investigated [8, 15]. For con-
tactless smartcard technology, such as Near Field Communication (NFC), there
are several proposals [2, 13, 14] in the literature for secure internet banking.

There are other banks that use USB-connected readers that act as smartcard
readers. The Gemalto website gives an overview of banks that use their products,
but not all these systems work in the same way.

16 Other abuse case would be: (ii) malicious code on the PC tries to get the reader to
sign something not shown to the user and (iii) malicious code on the PC tries to
send a PIN code guess to the smartcard.
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The Swedish Handelsbanken also uses a Gemalto reader, but here things work
differently from the system described above. For internet banking with Handels-
banken, the reader is used to obtain bank account details from the smartcard
so the user does not have to enter this manually. However, the display of the
reader is not used at all, except to show a progress bar when entering PIN codes!
To log in or confirm a transaction shown on the webpage, the user has to enter
his PIN code on the reader, but all further interaction between the PC, reader
and smartcard is invisible to the user. Effectively, this means that the class 3
smartcard reader (with display and keyboard) is only used as a class 2 smartcard
reader (with keyboard but withour display). This suggests Handelsbanken does
not consider Man-in-the-Browser attacks a serious threat, and only uses the USB
connection to make internet banking more user friendly, as users do not have to
type in their account numbers or re-type challenges and responses.

The only other USB-connected reader used for internet banking we are aware
of is at another Swedish bank, SEB. SEB uses a reader from a different vendor,
namely the DIGIPASS 920 by Vasco17. This reader is used similarly to the way
Handelsbanken uses their reader, i.e. without using the display.

Unlike the systems above, which do not even try to achieve WYSIWYS, there
are alternative systems for internet banking that do try to achieve this.

The German Volksbank uses the Sm@rtTAN optic where an optical signal
(a flickering bar code) on the webpage is used to transmit information about
the transfer to a handheld smartcard reader (which has an optical interface).
The reader then shows transaction details and produces a confirmation code
that the user has to type in. Advantage of this system is that communication is
physically guaranteed to be one way – from the PC to the reader – unlike with
a USB connection. The disadvantage is that it introduces a bit more hassle for
the user, e.g. the user has to hold the reader in front of the bar code during the
transmission of the data.

IBM’s ZTIC (Zone Trusted Information Channel) is a USB-connected device
with a small display [17, 18]18. Unlike the devices mentioned above, the ZTIC
has the capabilities to set up a secure channel to a remote site, meaning that it
is a trusted display in the broad sense as discussed in Section 4. It can therefore
provide stronger security guarantees than the devices above, at the expense of
a more complex device, which now also is able to store key material (notably
public keys to set up secure channels) and needs the cryptographic processing
capabilities for this. The ZTIC does not have a keyboard, but does have a turn-
wheel to allow user input, which can be used for entering a numeric PIN code.

12 Conclusions

The basic idea of having a simple USB connected device that provides a trusted
display and keyboard for users to authorise transactions, by letting their smart-

17 http://www.vasco.com/company/case_studies/seb.aspx
18 http://www.zurich.ibm.com/ztic
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card provide digital signatures, is very sensible19. This makes it all the more
disappointing that this particular implementation of the idea fails so miserably.
It is ironic that a system that is marketed under the name SWYS, ‘See What
You Sign’, should fail to meet the central security objective it is named after.

The weakness cannot be fixed by improvements in the device driver. The
problem could be fixed in new versions of the card reader without requiring
changes in the smartcard or the device driver. Of course, this leaves the practical
problem that there are millions of card readers already deployed.

To make matters worse, the problem is not caused by a subtle flaw or low-
level coding defect that is easily overlooked. The fundamental design decision
of giving the PC such fine-grained control over the reader (in particular, letting
the reader report to the PC that the user pressed OK, and then letting the PC
instruct the reader to let the smartcard generate a cryptogram) goes against the
whole idea of What-You-Sign-Is-What-You-See. This design decision does not
inevitably lead to a security flaw, but it is clearly asking for trouble, and opens
the door to a whole category of potential attacks.

We can only wonder what possessed the developers to design the system in
this way, or indeed how banks deciding to use this system could have missed it
in even a superficial security analysis.

The bank was informed about this vulnerability immediately after we dis-
covered it. When informing them we supplied a video demonstrating the attack;
by checking the logs of the bank’s back-end they could confirm that this video
showed an actual attack. The bank responded promptly and contacted their sup-
plier. This resulted in swift action to develop an improved version of the reader,
which will be rolled out in the course of 2012. The supplier confirmed to us that
they have no other clients that use the system with this weakness; it seems that
ABN-AMRO has been an early adopter of this particular product.

Our paper is not the first to signal problems with security protocols used in
the banking industry. Several problems have been noticed in the past [3,12,15].
Banks are now wise enough to use standard cryptographic algorithms, such as
3DES, RSA, and SHA-1, and not to rely on proprietary ones. However, they do
still choose to design their own security protocols and try to keep them secret.
Given that security protocols can be so tricky to get right, we believe it would
be better to adopt the same approach for security protocols as for cryptographic
algorithms, and only use published protocols that have been subjected to a
rigorous public review.

19 In fact, our initial motivation in reverse-engineering the system, in an MSc project
by the first author, was to see if we could re-use the same reader, in combination
with a different smartcard, for other applications where digital signatures are needed.
Since the device itself does not need to contain any secrets, this should be possible;
however, the unknown hashing mechanisms in the device, functions f and g in Fig. 4,
currently still prevent this.
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